EphB-Mediated Degradation of the RhoA GEF Ephexin5 Relieves a Developmental Brake on Excitatory Synapse Formation

نویسندگان

  • Seth S. Margolis
  • John Salogiannis
  • David M. Lipton
  • Caleigh Mandel-Brehm
  • Zachary P. Wills
  • Alan R. Mardinly
  • Linda Hu
  • Paul L. Greer
  • Jay B. Bikoff
  • Hsin-Yi Henry Ho
  • Michael J. Soskis
  • Mustafa Sahin
  • Michael E. Greenberg
چکیده

The mechanisms that promote excitatory synapse formation and maturation have been extensively studied. However, the molecular events that limit excitatory synapse development so that synapses form at the right time and place and in the correct numbers are less well understood. We have identified a RhoA guanine nucleotide exchange factor, Ephexin5, which negatively regulates excitatory synapse development until EphrinB binding to the EphB receptor tyrosine kinase triggers Ephexin5 phosphorylation, ubiquitination, and degradation. The degradation of Ephexin5 promotes EphB-dependent excitatory synapse development and is mediated by Ube3A, a ubiquitin ligase that is mutated in the human cognitive disorder Angelman syndrome and duplicated in some forms of Autism Spectrum Disorders (ASDs). These findings suggest that aberrant EphB/Ephexin5 signaling during the development of synapses may contribute to the abnormal cognitive function that occurs in Angelman syndrome and, possibly, ASDs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of excitatory synapse development by the RhoGEF Ephexin5

The neuronal synapse is a specialized cell-cell junction that mediates communication between neurons. The formation of a synapse requires the coordinated activity of signaling molecules that can either promote or restrict synapse number and function. Tight regulation of these signaling molecules is critical to ensure that synapses form in the correct number, time and place during brain developm...

متن کامل

Dynamic control of excitatory synapse development by a Rac1 GEF/GAP regulatory complex.

The small GTPase Rac1 orchestrates actin-dependent remodeling essential for numerous cellular processes including synapse development. While precise spatiotemporal regulation of Rac1 is necessary for its function, little is known about the mechanisms that enable Rac1 activators (GEFs) and inhibitors (GAPs) to act in concert to regulate Rac1 signaling. Here, we identify a regulatory complex comp...

متن کامل

Ephecting Excitatory Synapse Development

Alterations in synapse number and morphology are associated with devastating psychiatric and neurologic disorders. In this issue of Cell, Margolis et al. (2010) show that the RhoA-guanine exchange factor (GEF) Ephexin5 limits the numbers of excitatory synapses that neurons receive, thus identifying a new mechanism controlling synaptogenesis.

متن کامل

EphB Receptors Interact with NMDA Receptors and Regulate Excitatory Synapse Formation

EphB receptor tyrosine kinases are enriched at synapses, suggesting that these receptors play a role in synapse formation or function. We find that EphrinB binding to EphB induces a direct interaction of EphB with NMDA-type glutamate receptors. This interaction occurs at the cell surface and is mediated by the extracellular regions of the two receptors, but does not require the kinase activity ...

متن کامل

Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway.

Membrane-associated guanylate kinases (MAGUKs), including SAP102, PSD-95, PSD-93, and SAP97, are scaffolding proteins for ionotropic glutamate receptors at excitatory synapses. MAGUKs play critical roles in synaptic plasticity; however, details of signaling roles for each MAGUK remain largely unknown. Here we report that SAP102 regulates cortical synapse development through the EphB and PAK sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 143  شماره 

صفحات  -

تاریخ انتشار 2010